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Abstract. A double-panbola model is used lo calculae various properties of the e r i t i d  droplet 
in homogeneous nucleation using the Cahn-Hilliard non-classical theory. and the result.; are 
compared with those predicted from the classical theory due to Becker and Wring. The 
ollculation can be performed mostly analytically, and various quantities can be chanclerized 
by two panmeters: the supersaturation which measures difference in chemical potential from 
two-phase coexistence. and the asymmelry of thermodynamic properlies of the liquid and the 
vapaur phase. The predictions of the non-classical theory do not differ much from those of 
the classid theory in liquid-vapour nudeation (liquid droplet formntion), but the difference is 
significant in vapour-liquid nucleation (gas bubble formation). In particular, the nonclassical 
nucleation rate of bubble fomtion is found to be signiliuntly faster, t y p i d y  18 orders of 
magnitude, than Ule classical nucleation mate. The deviations of the nonclassical r e s u l ~ ~  from 
classical data increase as the asymmetry becomes more pronounced. 

1. Introduction 

Homogeneous nucleation [1,2], the formation of a critical droplet of a new phase, plays 
a central role in the understanding of the dynamics of every first-order phase transition, 
among which gas-liquid nucleation, the nucleation of liquid from supersaturated vapour, 
and its reverse process, liquid-gas nucleation, the nucleation of vapour bubbles from liquid 
under tensile stress (cavitation), are the oldest and the most famous examples. In the gas- 
liquid problem the ‘classical nucleation theory’ due to Volmer and Weber [3] and to Becker 
and Doring [4] is still a standard and usable theory, which is based on the transition state 
approach, in which the excess free ener-7 ASZ(R0) of the critical droplet of liquid with 
the radius Ro is regarded as an ‘activation energy barrier’ and the rate of nucleation of the 
critical droplet per unit volume and unit time has the form 

J = Joexp[-AS2(R0)/k~Tl. (1.1) 

The pre-exponential factor JO is calculated from the gas kinetic theory combined with a 
phenomenological sticking coefficient which describes the sticking probability of particles 
on the critical liquid droplet. This simple derivation of JO has been refined by Zeldvich [5]  
and by Langer and Turski [6] using more fundamental statistical approaches. However, the 
most important quantity of the theory is the energy barrier hCZ(Ro), with which we shall 
be mainly concerned in this paper. 

A central assumption of this ‘classical’ theory is known as the ‘capillarity 
approximation’, where even a small droplet is considered to be macroscopic, i.e. the inside 
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of the droplet is a liquid with constant bulk density and thermodynamic properties, and 
the surface is infinitely narrow with the surface tension of a planar interface at two-phase 
coexistence; the effect of curvature on the surface and of inhomogeneity of density of the 
droplet are totally ignored. (A short review can be found in the paper of Oxtoby and Evans 
171.) Using this approximation, the free-energy barrier in equation (1.1) consists of the 
k energy of bulk liquid inside the droplet and the surface free energy (tension) and is a 
function of the radius of the droplet: 

The radius Ro of the critical droplet is determined from the maximum a(AS2)/aR = 0 as 

Ro = W / l A p l  (1.3) 

where y is the surface tension of the planar interface (at two-phase coexistence), and 
Ap = pv - P I  is the pressure difference between the centre of the liquid droplet and the 
(unstable) surrounding vapour. We note in passing that the same formula is applicable to 
liquid-gas nucleation where p~ > p v ,  while pv  > pI in gas-liquid nucleation. Equation (1.3) 
is the so-called Laplace condition. Inserting equation (1.3) into equation (1.2). we find that 
the classical barrier height Anc, = AS2(Ro) is given by 

AQd = $ ~ y ~ / ( A p ) ~  (1.4 

which is used to calculate the nucleation rate J in equation (1.1). 
This classical theory can predict the nucleation rate J with reasonable accuracy for 

most substances [SI, but recent more accurate measurements start to predict systematic 
deviations from the classical theory (see, e.g., [9,10] and references cited in [l]). Cahn 
and Hilliard [I I], furthermore, pointed out that this classical theory based on the capillarity 
approximation cannot predict the correct behaviour of the barrier height, which should 
vanish (Ai2 --f 0) as the spinodal is approached and showed that ‘non-classical nucleation 
theory’ based on the square-gradient density-functional theory can predict this behaviour 
correctly. This ‘non-classical’ theory does not employ the capillarity approximation at 
all but calculates directly the free energy and the density profile of an inhomogeneous 
droplet as a function of supersaturation. Recently, Oxtoby and Evans [7] have extended the 
Cahn-Hilliard theory to the non-local van der Waals density functional with the Yukawa 
interaction; they also extended the theory to liquid-gas nucleation, the formation of bubbles 
in a liquid under negative pressure, and found a critical nucleation rate much larger (up to 
19 orders of magnitude) than the prediction of classical theory. Zeng and Oxtoby [9] have 
applied this theory to a more realistic system with the Lennard-Jones interaction and found 
again a very large deviation from the classical theory. 

This non-classical theory based on density-functional theory focuses primarily on the 
barrier height AS2 and seems to cast doubt on the accuracy of the ‘capillarity approximation’. 
Unfortunately, this conclusion is derived almost entirely from the results of numerical 
calculation and for specific models, and we cannot extract general conclusions except for 
special limiting cases; we have to repeat the numerical computation each time for specific 
materials. The purpose of this paper is to perform the calculation of this barrier height 
analytically as far as possible using the ‘non-classical’ Cahn-Hilliard theory combined with 
a double-parabola model For the free-energy density and obtain analytical relations between 
various quantities and, in particular, the dependence on supersaturation and on asymmetty 
between liquid and vapour phases. 



Non-classicaI theory of homogeneous nucleation 7539 

The format of this paper is as follows. In section 2, we present the solution of the Cahn- 
Hilliard theory for the droplet using the double-parabola approximation and, in particular, 
the analytic solution for the density profile of the liquid droplet and the gas bubble. We 
calculate various quantities related to the critical droplet as a function of two parameters: 
the degree of supersaturation and the asymmetry of liquid and vapour. We conclude in 
section 4. 

2. Formulation 

According to density-functional theory, the density profile and the grand potential D of an 
inhomogeneous and non-equilibrium system such as a critical droplet away from coexistence 
are obtained from the saddle point in functional space of the grand potential density 
functional D[p(r)] and can be obtained by extremizing this functional by the density profile 
p ( r )  [ 1.21. We consider the simplest square-gradient density functional originally employed 
by Cahn and Hilliard [IO]. A grand potential functional of the critical droplet relative to 
unstable atmosphere is given by [ 1,2] 

where 

4 P )  = f ( P )  - PP (2.2) 

is the grand potential density of a uniform system, and f ( p )  represents the Helmholtz free 
energy density, p is the chemical potential and L is the squawgradient coefficient. Pb is the 
density of the supersaturated vapour (in the case of liquid droplet formation) or the liquid 
under tensile force (in the case of cavitation). This square-gradient form is known to be 
a reasonable approximation for liquids interacting with a short-range force, but for liquids 
with a long-range algebraic force a more elaborate non-local density functional is necessary 
[12]. The relation between the square-gradient approximation and more complicated density- 
functional theories can be found in [13.14]. 

The Euler-Lagrange equation, which determines the density profile 

% W ~ ( r ) l } / 4 4 r )  = 0 

is written as 

d2p/drZ + (2/r)(dp/dr) - (l/L)[WAw)/apl = 0 (2.3) 

with 

A ~ P )  = 40) - &IJ. (2.4) 

This ordinary differential equation should be solved in conjunction with the boundary 
conditions 
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We shall adopt the double-parabola model (figure 1)  for the free-energy density o(p) .  
which is frequently used in the square-gradient Landau-type theory as well as in the more 
sophisticated non-local van der Waals-type theory not too close to the critical point [15-IS]: 

where L A p  is the difference in chemical potential relative to that at coexistence, A p  > 0 
represents gaeliquid nucleation and A p  < 0 represents liquid-gas nucleation. plo and &,O 
are the bulk densities of the liquid and the vapour at coexistence, and pm is the intersection 
of two parabolae given by 

~m P ~ O  + (h/2&) AP = PIO - ( A / W  AP (2.7) 

AP = PIO - PVO. 
hl and A, are the inverses of the bulk correlation lengths of liquid and vapour and are 
proportional to the bulk isothermal compressibility of each phase. When A p  # 0, 
the equilibrium liquid density pi and equilibrium vapour density pv differ from those at 
coexistence, namely ,010 and pVo, and are given by 

Hence, Pb in equations (2.1) and (2.4) are 
py gas-liquid nucleation 

Pb = PI liquid-gas nucleation. 
The difference L Ap between the liquid and vapour pressures appearing in equations (1.2)- 
(1.4). namely 

L A P  = w ( P I ) - w ( P ~ )  

is written as 
Ap = A p  Ap + ; (Ap)'( l /h:  - l/A:). (2.9) 

Of course, when A p  = 0, we have Ap = 0. 
The critical point cannot be simulated properly by this double-parabola model, bur the 

spinodal point [ 111 can be defined formally as the points where pm = pv or pm = PI, for 
which the chemical potential A p ,  (gas spinodal) and A p ]  (liquid spinodal) are given by 

Apv  = ;Ah, Ap 

A p ]  = -%Ah! Ap 

(pm = pv, gas spinodal) 
(2.10) 

(pm = pv, liquid spinodal). 
As pointed out by Oxtoby and Evans [7] for the hard-sphere van der Waals model, the 
absolute value of Ap" at the gas spinodal is greater than A p ]  at the liquid spinodal since 
h, > hl in general. When A p  < 0, this double-parabola model has the singularity Ap = 0 
at 

(2.11) 

The analytic solutions of the differential equation (2.3) which satisfy the boundary 

= --h A P l ( l / h  + I/&) 
which is located in the unphysical region beyond the spinodal point A@,. 

conditions (2.5) are easily obtained for the model potential (2.6). 
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Figure 1. The free-energy density o f p )  of a uniform fluid. Note h t  the curves have a typical 
doubleminimum form The unstable minimum with higher energy loses local stability at the 
spinodd. 

I 

0 1 2 3 l/lP 

Figure 2. The clxsicol (- - -) and the non-clmical (-) critical radii of a nucleus (liquid 
or vapour) x functions of the degree 1/1@1 of supemtumtion when U = 1 (symmehic31 fluid). 
They are roughly linea in l / i@I .  Note that in this m e  the curves represent both vapaur-liquid 
and liquid-vapour critical radii because of symmetry. The non-classic31 radius approaches zero 
while the classical radius approaches a finite value at the spinodd. 

2.1. Gas-liquid nucleation (Ap  > 0) 

The amplitudes of density variation are 

(2.12) 

(2.13) 

The ‘non-classical’ radius ro of the critical droplet, which corresponds to the ‘classical’ 
radius Ro in equation (1.3), is determined from the continuity of the first derivative of the 
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density profile dp(r)/dr at ro and is the solution of the equation 

which has a unique solution ro when A p  z 0 and ro -+ 00 as A p  + Ot. Using 
equation (2.13), equation (2.14) can be transformed into 

which is used by Oxtoby (by setting pv = 0) in a similar double-parabola model of 
crystal-melt nucleation [18]. An almost equivalent model has also been used by Holyst 
and Poniewierski [I71 to discuss the wetting on a sphere. 

Using the density profiles (2.12). the non-classical barrier height AS& corresponding 
to the classical barrier height A& in equation (1.4) can be calculated from equation (2.1) 
as 

where 

which, using equation (2.14), can be further simplified to [18] 

ACZ.,] = -$ r r iL  A p  + 2rrLC0, - p,)(pi - p,)ro(l +A&). (2.15) 

Then, the surface free energy y' of the spherical droplet with radius ro, which corresponds 
to the surface tension y of the planar interface at coexistence, is given by 

where ro is determined through equation (2.14) as a function of A p .  Since ro --f 00 as 
A p  -+ @, y'(Ap + Ot) coincides with the surface tension of the planar interface: 

y = +LA(Ap)* (2.17) 

at coexistence A p  = 0 of this double-parabola model. Inserting equations (2.9) and (2.17) 
into equations (1.3) and (1.4), we can calculate the radius ro and the barrier height And of 
the critical droplet from the classical 'capillarity approximation': the results will be reported 
in the next section. 
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2.2. Liquid-gas nucleation ( A p  e 0) 

In this case, we can obtain the solutions by replacing AI -+ AV, AV -+ AI, and Ap -+ -Ap, 
i.c. L, 3 --LI and L1 -+ -L, in those of gas-liquid nucleation. The density profile, for 
example, becomes 

pv + (ro/r)L,cosech(h,ro) sinh(A,r) r < ro 
r ro. 

(2.18) I PI - (ro/r)Liexp[-A~(r - ro)l 
p(r) = 

The critical radius ro of the ‘critical bubble’ is determined from 

(1 + L I / U  + ( L I A I / ~ A ) ( A ~  = (AVrdcoth&ro). (2.19) 

This equation has a single solution ro so long as A p  < 0, and again ro -+ 00 as A p  4 OW. 
Using the density profile (2.18). we can calculate the barrier height as 

= +$nr iL  AP + 2 n W 1 -  P ~ P I  - pv)ro(l + 4ro) (2.20) 

which should be compared with equation (2.15); however, A p  < 0 in this case and, hence, 
Ap < 0. Again, we can define the surface free energy of the bubble as equation (2.16), 
which is also equal to the surface tension of the planar interface (2.17) in the limit A p  0-. 

All the above results are expressed as functions of the supersaturation measured by Ap, 
and AI, A, and Ap which characterize the bulk thermodynamics. The numerical results will 
be presented in the next section. 

3. Results 

The above results can be characterized, in fact, by only two parameters if we use appropriate 
scaling of variables. We introduce the parameter 01 which represents the asymmetry of the 
thermodynamics properties of the liquid and vapour phases, and j3 instead of A p  which is 
the deviation of the chemical potential from coexistence: 

Here j3 is proportional to A p  and represents the shift in equilibrium density relative to 
that at coexistence as we can anticipate from equation (2.8). Since A, > AI in general, the 
asymmetry 01 < 1. We term a fluid with (Y = 1 a symmetric fluid and a fluid with IY < 1 an 
asymmetric fluid. Similarly, we introduce the scaled quantities 

hIr -+ x 

A,r --f y ( =  x/a) 

(PO) - P ~ A P  -+ 6(.d O r i W  

AQ[p]/(4?rL Ap2/3h) -+ Af2[,5]. 

Then the results of the previous section are as follows. 

(3.2) 
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3.1. Gas-liquid nucleation (J z 0) 

The density profile (2.12) is now written as 

Equation (2,14), which determines the ‘non-classical’ radius x g  = Alro or yo = A,rO, 
becomes 

[ 1 + ( ~ ( 1  +(Y - ~ $ ) / ( 1  +0r+B)1+[(1 + ~ l - ( ~ ~ B ) / ( l + ( ~ + B ) ] ~ o = ~ o c o t h ( ~ o ) .  (3.4) 

Since the equilibrium densities (2.8) at A p  scaled by equation (3.2) are given by 

PI = 1 + B A 1  t aY 

A = Ba2/(1 +CY)* 

then the density at the centre of the critical nucleus is 

B(0) = A - [ ( I  + a  + @)/(1 + a)21[xo/sinh(xo)l 
which is always lower than the equilibrium density at the chemical potential Ap. 
Similarly, the non-classical surface free energy y’ (equation (2.16)) divided by the surface 
tension y of the planar interface (equation (2.17)) is written as 

Y’ /Y  =(I /Yo)r ( l  + a - ~ f l ) ( I  +a+B-a@) / ( l  + c m  +yo) (3.5) 

where yo(= X O / ( Y )  is determined from equation (3.4). This ratio approaches unity as B -+ Ot 
since xo -+ o. 

The non-classical energy barrier AS?,, corresponding to equation (2.15) can be 
expressed as a function of a, ,B and XO, but we shall not reproduce the result. 

3.2. Liquid-gar nucleation (J c 0)  

In this case, we can obtain the equations by simply replacing 01 + I/a, ,9 + -@, y + x ,  
x + y and p + 1 - ,6 in those for gas-liquid nucleation, and the density profile of the 
bubble, for example, becomes 

Equation (2.19). which determines the radius xg = Alro and yo = A,ro of the critical bubble, 
now becomes 

[ l  + ( I  +(Y+B)/a(l +(Y-ap)I+[(l + a + ~ ) / ( l + ~ - - B ~ I y o = y o c o t h ~ y o )  (3.7) 
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and the vapour density at the centre of the bubble is 

which is always higher than at the chemical potential Ap. One may also derive 
expressions for the surface free energy and the barrier height as a function of a, j3 and 
XO . 

Comparing equations (3.4) and (3.7). we observe that for a symmetric fluid with a = 1 
the critical radii of the liquid droplet from equation (3.4) and the vapour bubble from 
equation (3.7) calculated at the same degree Ij3l(lApl) of supersaturation are equal. In 
general, however, they are different for the same degree IAp[ of supersaturation because 
a c 1. Both equation (3.4) and equation (3.7) predict a diverging radius, i.e. 

xo + (1 +ru)/lBI as IBI + 0 (3.8) 

as demonstrated by Cahn and Hilliard 1111, and vanishing radii, i.e. 

xo = yo = 0 

at j3" = (1 + a)/a and = -(I +a) corresponding to Apv (vapour spinodal) and A@, 
(liquid spinodal). Although these vanishing radii contradict the conclusion of Cahn and 
Hilliard [ 111, who predicted diverging radii, it is due to the difference between the definition 
of radius in our model and the definition in theirs. In fact, as spinodals are approached, the 
density profile becomes more and more vapour like for liquid-vapour nucleation as one can 
see from equations (3.3), and liquid like for vapour-liquid nucleation from equations (3.6), 
and they both approach il constant density a/(1 t a), which is qualitatively the same 
behaviour as observed by Cahn and Hilliard [I l l .  

The classical radius X o  = hlRo is, using equations (1.3), (2.9) and (2.17). written as 

xo = (1 +@)/IS + 2 B V  - d / ( l +  all (3.9) 

which has the same limiting form as the non-classical results (3.8) when IBI + 0 or a = 1. 
Even the classical radii of the liquid and the vapour nuclei are different for the same I j 3 I  
when a # 1. 

In figure 2, we have plotted 'classical' and 'non-classical' critical radii XO and xo as 
functions of supersaturation B(0c Ap)  for a symmetric (a = 1) fluid. In this case the gas- 
liquid nucleation and the liquid-gas nucleation are completely symmetric; the magnitudes 
of critical radii are equal for the same degree I j 3 I  of supersaturation. We have to note that 
j3 < 0 corresponds to bubble formation and j3 > 0 to droplet formation. Both classical and 
non-classical radii are roughly linear in 1/1j31 as one can expect from equation (3.9). The 
deviations of the non-classical radius from the classical radius are only appreciable near the 
spinodals. 

The critical radii for an asymmetric fluid with a = 0.7 are shown in figure 3. A singular 
tendency observed in the classical result when we approach the (liquid) spinodal point j3j 

is due to the unphysical singularity at pc = -2(1 + a) / ( l  - a) corresponding to ApC 
in equation (2.1 I), which is certainly an artefact of the simplicity of this double-parabola 
model. As we can observe from the figure, the deviations in the magnitude of the non- 
classical radius from the classical radius become larger as the asymmetry is increased (a 
decreased); the non-classical radius is larger, on the whole, than the classical radius for 
liquid droplet formation and, on the other hand, the classical radius is always larger than 
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Figure 3. (a) The same as in figure 2 but for droplet formation (vapour-liquid nucleation) 
when e = 0.7. The non-classical radius is on the whole greater than the classid radius.(b) 
The same as in (a),  but for bubble formation (liquid-vapour nucleation). Now, the non-elassicd 
radius is always smaller lhm the classical radius, and the difference is larger than hat for droplet 
formation. 

the non-classical radius for vapour bubble formation, and the non-classical effect is more 
pronounced in liquid-vapour nucleation (cavitation) than in vapour-liquid nucleation. These 
results are qualitatively in accord with the numerical results of Oxtoby and Evans [7]. 

The typical density profiles of the droplet and the bubble are displayed in figure 4 for 
various degrees j3 of supersaturation and asymmetry E = 0.7. The densities of the liquid 
and the vapour at coexistence are unity and zero on the scale (3.2); the density at the centre 
of the liquid nucleus is higher than the liquid density of unity at coexistence when j3 is 
small, but eventually it becomes lower as the spinodal bv N 2.43 is approached. The density 
at the centre of a vapour bubble is lower than the vapour density of zero at coexistence but 
it becomes higher as the liquid spinodal j31 = 1.7 is approached. Clearly, as noted in the 
previous paragraph, both densities approach 0.7/1.7 N 0.4 at the spinodals for a = 0.7. 
Again, as one can anticipate from figure 3, the non-classical effect on the density profile is 
more pronounced in liquid-vapour nucleation (bubble formation). 

In figure 5 we have plotted the ratio of the surface free energy of the nucleus divided 
by the surface tension of the planar interface given by equation (3.5) for j3 z 0 and by a 
similar equation for j3 c 0. We have already pointed out that this ratio approaches unity in 
the limit of low supersaturation j3 + 0. It reaches a maximum larger than unity somewhere 
and then starts to decrease to zero as j3 increases from zero to the vapour spinodal in 
vapour-liquid nucleation j3 > 0; this maximum is higher and the region where it exceeds 
unity (surface free energy of the spherical droplet is greater than the planar surface free 
energy) is wider as the asymmetry is increased (a decreased). An effective surface tension 
y' of a small spherical droplet with large j3 is smaller than the surface tension of a planar 
interface because y ' / y  e 1. A similar behaviour of the surface free energy of the droplet 
has been observed by several workers [19,20]. For bubble formation (j3 c O), this ratio is 
always smaller than unity and monotonically decreases to zero at the liquid spinodal, and 
the deviation of y' from y is again larger as the asymmetry is increased. This different and 
asymmetrical behaviour of the surface 6ee energy of the droplet and the bubble affects the 
free-energy barrier height of nucleation, which we shall discuss next. 

In figures 6 and 7 we have plotted the classical free energy barrier height A& and 
the non-classical free energy barrier height A& as functions of j3-'(m Ap-*). The 
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lo1 

( I )  

B--l.O p-0.s b--0.2 

0.4 

0.0 

Figure 4. (0)  Typical density profiles of  3 droplet with 3sg"eWy a = 0.7 for several values 
of lhe supersalumtion 8. The arrows indicate fhe ciass'cal ndG d c & d  from equation (3.9). 
which Seem a gwd estimate of the size of the droplet. (6) The m e  as in (a) but for bubble 
fomtion. There~densityprofilesareme3E~blyshmnkfromthaseexpecredf"fheclassiul 
ndii indicated by m w s  The non-chsid emcl is more appreciable in bubble formation thm 
in droplet fomtion in (a). 

classical barrier height is calculated from equations (2.9) and (2.17), which becomes, using 
the scaling (3.2) 

A ~ C I  = F 2 / I 1  + (8/21[(1 - a ) / ( l  + 4 l l 2  (3.10) 

from which we expect that the barrier height is roughly linear in p-'. The barrier height 
for a symmetric fluid with (I = 1 is plotted in figure 6. In this case, liquid-vapour and 
vapour-liquid nucleation are symmetric, the barrier heights always satisfy AQ,l > AQ.,l, 
and the non-classical nucleation rate will be always faster than the classical nucleation rate 
if we calculate the classical and non-classical nucleation rates JCt and Jnd from equation 
(1.1) using the barrier heights AQ,, and AQt,l. 

A more realistic case of nn asymmetric fluid with (I = 0.7 is displayed in figure 7. The 
non-classical and the classical barrier heights cross at some point (figure 7(n)) for liquid 
droplet formation (B > 0). Therefore, the crossing indicates that, for small supersaturation 
j3, the non-classical nucleation rate will be slower than the classical nucleation rate 
(JcI z .Incl) because AQ,, > AQ,1 while Jncj > Jet for sufficiently large B.  Oxtoby 
and Evans [7J argued that for parameters appropriate to real materials it happens that 
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Figure 5. The surface free energy y‘ of a nucleus 
divided by the surface tension y of the planar interface. 
The negative f l  < 0 represents bubble formtion and 
positive 6 > 0 droplet formation. The ratio y’fy 
approaches unity at ,9 = 0 and zero at spinodnls. The 
curve is symmetricd for 3 symmetric fluid with ~l = 1. 
Note that the curve exceeds the ntio of unity in Some 
interval when a fluid is asymmetric. 

Figure 6. The nuclealion freeenergy barrier height of 
classiwl (- - -) and non-classical (-1 theories for 
a symmetric fluid wifh a = 1. Note thnt in this case 
the cuwes represent both droplet formation and bubble 
formation. The non-classid bmier height is always 
lower than the classical barrier height, which suggests 
a faster non-classid nucleation rate than a classical 
nucleation me. 

Figure 7. (a) The same as figure 6, but with e = 0.7 and for droplet formation. In this cas+ 
two cuwes cross at some point, where the clmicd and the non-classical nuclention ra ta  have 
the same magnitude; the nonclassical effect could be small for the vapour-liquid nucleation. 
(b) The same as in ( U )  but for bubble formation. This figure is similar to figure 6, but now the 
deviations of the non-classid barrier heights from the classical bnnier heights are large. which 
suggests a large non-classical effect on the liquid-vapour nucleation rate. 

A& N AQnc] and, hence, J,I which is the reason why the classical nucleation 
theory has been satisfactory so f a ;  the success of classical theory occurs just by chance! 

The energy barrier for bubble formation is quite different (figure 7(b)) ,  in contrast with 
droplet formation, reflecting a different behaviour of the surface free energy (figure 5(b)). 
It always satisfies An,] > ASZnCl, and the difference between the classical and the non- 
classical barriers is much greater than that for droplet formation (figure 7(n)), by which we 
may expect a much faster non-classical nucleation rate J,I >> Jcl. Such a large non-classical 
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effect has already been predicted from numerical work [7,9] and suggests the possibility of 
detecting a non-classical effect in liquid-vapour bubble formation. It is also obvious from 
figure 7(b)  that such a large non-classical effect is more easily detectable in materials with 
a large asymmetry (small a). 

Because of the simplicity of this doubleparabola model, temperature effects are not 
expected to be handled properly, especially near the critical point. Furthermore, various 
parameters are temperature dependent. which makes the application of this analysis to the 
temperature effects more difficult. For example, the asymmeby a depends strongly on 
temperature. From the theoretical estimation of the bulk correlation lengths AI and A, for 
a series of temperatures in the literature [12], we find that a depends almost linearly on 
temperature; it starts from a very small value at a low temperature and linearly increases 
and approaches unity (symmetric fluid) at the critical point. One might naively expect, at 
most, that the non-classical effects will be pronounced at low temperatures because of small 
a and large asymmetry. 

Finally, we close this section by estimating the magnitude of the non-classical effect on 
the nucleation rate numerically. From equation (1.1), the non-classical nucleation rate Jnd 
divided by the classical nucleation rate J,I becomes 

I 

JndJC~ = exp[(AQcl - A ~ n c ~ ) / k ~ T l  N ~~P~~~[ (~ I /~ : ) / (P I ICBTKI) I (AB, I  - A f i d  

where we have considered a relatively low temperature and used the scaling (3.2), LA: - 
( p f ~ ~ ) - ' ,  where K I  is the isothermal compressibility of bulk liquid, Ap - PI, and I N A1 to 
eliminate L.  If we consider a standard monatomic fluid with atomic diameter d, the bulk 
correlation length is given by I;' - d and p1 - 6r7/nd3 with 7 _Y 0.5, the packing fraction 
from standard liquid state theory; then we have 

JncilJci ~ ~ P [ ( ~ / P I ~ D ~ K I ) ( A S ? C I  - A f i o d l .  

A typical magnitude of the normdized isothermal compressibility is p l k ~ T ~ l  N 0.1 [7]; 
therefore, 

JdJc~ - exp[40(A&1 - A&I)I. (3.11) 

From figure 7(a), Afid - A& N +0.2--0.2 for vapour-liquid nucleation when the 
degree of asymmetry is a = 0.7; therefore, Jncl/JCl N 10f4-10-4. On the other hand, 
for cavitation, we have from figure 7(b) that Ab,l - AS?,, N +0.5-+1.0; therefore, 
Jncl/Jcl 2: 10+9-10+'8; the non-classical rate is always faster than the classical rate, and the 
deviation amounts to between nine and 18 orders of magnitude. Such a huge non-classical 
effect on liquid-vapour nucleation (cavitation) has already been predicted numerically by 
Oxtoby and co-workers [7,9], and we reconfirm their result. It is again obvious that the 
non-classical effect is more marked for smaller a and larger asymmetry. 

4. Conclusions 

In this paper we have calculated the barrier height and the density profile of the nucleus for 
homogeneous nucleation using the 'non-classical' Cahn-Hilliard theory without using the 
so-called 'classical' capillarity approximation and by employing the double-parabola model 
and the square-gradient approximation. Most of our results are common to those obtained 
by Oxtoby and Evans [7] using a similar non-classical theory; however, our analysis clearly 



7550 M Iwamatsu 

demonstrated that asymmetry of the bulk thermodynamics of liquid and vapour phases 
plays a crucial role in producing non-classical effects, which, in particular, could be huge 
for bubble formation in liquids under tensile stress (cavitation). Although the double- 
parabola model is so simple that parameters other than asymmetry represented by the ratio 
of the compressibilities could equally play a crucial role in reality, it will be interesting 
to observe such non-ciassical effects experimentally in cavitation in such materials with a 
large asymmetry or at a low temperature far from the critical point where the asymmetry is 
more pronounced. 

Finally, we note that, although we have used a local density-functional theory based on 
the square-gradient approximation, the final results will not be altered qualitatively even if 
we use a non-local density-functional theory as long as the intermolecular force remains short 
ranged and will be even semiquantitatively correct by an appropriate renormalization of the 
correlation length [12]. For a special type of integration kernel with exponential form, the 
integral equation derived from non-local density functional is solvable analytically [21,22], 
and an almost parallel analysis to this work may be possible. We believe, finally, that this 
work is of use in understanding the qualitative aspects of liquid-solid nucleation [23] as 
well. Very recently, Oxtoby [I81 initiated use of a similar double-parabola model to study 
the liquid-solid problem. 
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